Introduction and reanalysis-system overview
- Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.:
Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417-1452, doi: 10.5194/acp-17-1417-2017, 2017.
|
Data sets
- Martineau, P., Wright, J. S., Zhu, N., and Fujiwara, M.: Zonal-mean data set of global atmospheric reanalyses on pressure levels, Earth Syst. Sci. Data , 10, 1925-1941, doi:10.5194/essd-10-1925-2018, 2018.
- Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63-76, doi:10.5194/essd-9-63-2017, 2017.
|
Temperature and Geopotential
- Marlton, G., Charlton-Perez, A., Harrison, G., Polichtchouk, I., Hauchecorne, A., Keckhut, P., Wing, R., Leblanc, T., and Steinbrecht, W.: Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses, Atmos. Chem. Phys., 21, 6079–6092, doi: 10.5194/acp-21-6079-2021, 2021.
- Manney, G. L., Santee, M. L., Lawrence, Z. D., Wargan, K., and Schwartz, M. J.: A moments view of climatology and variability of the Asian Summer monsoon anticyclone, J. Clim., 34, 7821-7841, doi: 10.1175/JCLI-D-20-0729.1, 2021.
- Kawatani, Y., Hirooka, T., Hamilton, K., Smith, A. K., and Fujiwara, M.: Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses, Atmos. Chem. Phys., 20, 9115–9133, doi: 10.5194/acp-20-9115-2020, 2020.
- Tegtmeier, S., Anstey, J., Davis, S., Dragani, R., Harada, Y., Ivanciu, I., Pilch Kedzierski, R., Krüger, K., Legras, B., Long, C., Wang, J. S., Wargan, K., and Wright, J. S.: Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer, Atmos. Chem. Phys., 20, 753–770, doi: 10.5194/acp-20-753-2020, 2020.
- Shangguan, M., Wang, W., and Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmos. Chem. Phys., 19, 6659–6679, doi: 10.5194/acp-19-6659-2019, 2019.
- Bao, X. and Zhang, F.: How accurate are modern atmospheric reanalyses for the data-sparse Tibetan Plateau region?, J. Clim., 32, 7153-7172, doi: 10.1175/JCLI-D-18-0705.1, 2019.
- Wright, C. J. and Hindley, N. P.: How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?, Atmos. Chem. Phys., 18, 13703-13731, doi: 10.5194/acp-18-13703-2018, 2018.
- Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., and Wright, C. J.: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP), Atmos. Chem. Phys., 17, 14593-14629, doi: 10.5194/acp-17-14593-2017, 2017.
- Nützel, M., Dameris, M., and Garny, H.: Movement, drivers and bimodality of the South Asian High, Atmos. Chem. Phys., 16, 14755-14774, doi: 10.5194/acp-16-14755-2016, 2016.
- Fujiwara, M., Hibino, T., Mehta, S. K., Gray, L., Mitchell, D., and Anstey, J.: Global temperature response to the major volcanic eruptions in multiple reanalysis data sets, Atmos. Chem. Phys., 15, 13507-13518, doi: 10.5194/acp-15-13507-2015, 2015.
- Kuchar, A., Sacha, P., Miksovsky, J., and Pisoft, P.: The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere, Atmos. Chem. Phys., 15, 6879-6895, doi: 10.5194/acp-15-6879-2015, 2015.
- Mitchell, D. M., Gray, L. J., Fujiwara, M., Hibino, T., Anstey, J. A., Ebisuzaki, W., Harada, Y., Long, C., Misios, S., Stott, P. A. and Tan, D.: Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets, Q. J. R. Meteorol. Soc., 141, 2011–2031, doi: 10.1002/qj.2492, 2015.
- Simmons, A. J., Poli, P., Dee, D. P., Berrisford, P., Hersbach, H., Kobayashi, S. and Peubey, C.: Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim, Q. J. R. Meteorol. Soc., 140, 329–353, doi: 10.1002/qj.2317, 2014.
- Fueglistaler, S., et al.: The relation between atmospheric humidity and temperature trends for stratospheric water, J. Geophys. Res., 118, 1052–1074, doi: 10.1002/jgrd.50157, 2013.
- Manney, G. L., Allen, D. R., Krüger, K., Naujokat, B., Santee, M. L., Sabutis, J. L., Pawson, S., Swinbank, R., Randall, C. E., Simmons, A. J., and Long, C.: Diagnostic Comparison of Meteorological Analyses during the 2002 Antarctic Winter, Mon. Wea. Rev., 133, 1261–1278, doi: 10.1175/MWR2926.1, 2005.
- Manney, G. L., Krüger, K., Sabutis, J. L., Sena, S. A., and Pawson, S.: The remarkable 2003-2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s, J. Geophys. Res., 110, D04107, doi: 10.1029/2004JD005367, 2005.
- Randel, W., et al.: The SPARC Intercomparison of Middle-Atmosphere Climatologies, J. Climate, 17, 986–1003, 2004.
- Manney, G. L., Sabutis, J. L., Pawson, S., Santee, M. L., Naujokat, B., Swinbank, R., Gelman, M. E. and Ebisuzaki, W.: Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies, J. Geophys. Res., 108, 8328, doi: 10.1029/2001JD001149, 2003.
- SPARC: SPARC Intercomparison of Middle Atmosphere Climatologies, SPARC Rep. 3, 96 pp., 2002.
- Pawson, S., and Fiorino, M.: A comparison of reanalyses in the tropical stratosphere: Part 3: inclusion of the pre-satellite data era, Clim. Dynam., 15, 241–250, doi: 10.1007/s003820050279, 1999.
- Pawson, S., and Fiorino, M.: A comparison of reanalyses in the tropical stratosphere: Part 1: thermal structure and the annual cycle, Clim. Dynam., 14, 631–644, 1998.
|
Winds
- Uma, K. N., Das, S. S., Ratnam, M. V., and Suneeth, K. V.: Assessment of vertical air motion among reanalyses and qualitative comparison with very-high-frequency radar measurements over two tropical stations, Atmos. Chem. Phys., 21, 2083–2103, doi: 10.5194/acp-21-2083-2021, 2021.
- Kawatani, Y., Hirooka, T., Hamilton, K., Smith, A. K., and Fujiwara, M.: Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses, Atmos. Chem. Phys., 20, 9115–9133, doi: 10.5194/acp-20-9115-2020, 2020.
- Bao, X. and Zhang, F.: How accurate are modern atmospheric reanalyses for the data-sparse Tibetan Plateau region?, J. Clim., 32, 7153-7172, doi: 10.1175/JCLI-D-18-0705.1, 2019.
- Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., and Wright, C. J.: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP), Atmos. Chem. Phys., 17, 14593-14629, doi: 10.5194/acp-17-14593-2017, 2017.
- Friedrich, L. S., McDonald, A. J., Bodeker, G. E., Cooper, K. E., Lewis, J., and Paterson, A. J.: A comparison of Loon balloon observations and stratospheric reanalysis products, Atmos. Chem. Phys., 17, 855-866, doi: 10.5194/acp-17-855-2017, 2017.
- Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A.: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses, Atmos. Chem. Phys., 16, 6681-6699, doi: 10.5194/acp-16-6681-2016, 2016.
- Martineau, P., Son, S.-W., and Taguchi, M.: Dynamical consistency of reanalysis datasets in the extratropical stratosphere, J. Clim., 29, 3057-3074, doi: 10.1175/JCLI-D-15-0469.1, 2016.
- Das, S. S., Uma, K. N., Bineesha, V. N., Suneeth, K. V., and Ramkumar, G.: Four-decadal climatological intercomparison of rocketsonde and radiosonde with different reanalysis data: results from Thumba equatorial station, Q. J. Roy. Meteor. Soc., 142, 91–101, doi: 10.1002/qj.2632, 2016.
- Kishore Kumar, G., et al.: Validation of MERRA reanalysis upper-level winds over low latitudes with independent rocket sounding data, J. Atmos. Solar-Terr. Phys., 123, 48–54, doi: 10.1016/j.jastp.2014.12.001, 2015.
- Podglajen, A., et al.: Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere, J. Geophys. Res., 119, 11166–11188, doi: 10.1002/2014JD021849, 2014.
- Randel, W., et al.: The SPARC Intercomparison of Middle-Atmosphere Climatologies, J. Climate, 17, 986–1003, 2004.
- SPARC: SPARC Intercomparison of Middle Atmosphere Climatologies, SPARC Rep. 3, 96 pp., 2002.
|
Potential Vorticity
- Millán, L. F., Manney, G. L., and Lawrence, Z. D.: Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics, Atmos. Chem. Phys., 21, 5355–5376, doi: 10.5194/acp-21-5355-2021, 2021.
|
Transport, including Ozone and Water Vapour
- Shangguan, M., Wang, W., and Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmos. Chem. Phys., 19, 6659–6679, doi: 10.5194/acp-19-6659-2019, 2019.
- Tao, M., Konopka, P., Ploeger, F., Yan, X., Wright, J. S., Diallo, M., Fueglistaler, S., and Riese, M.: Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products, Atmos. Chem. Phys., 19, 6509–6534, doi: 10.5194/acp-19-6509-2019, 2019.
- Ploeger, F., Legras, B., Charlesworth, E., Yan, X., Diallo, M., Konopka, P., Birner, T., Tao, M., Engel, A., and Riese, M.: How robust are stratospheric age of air trends from different reanalyses?, Atmos. Chem. Phys., 19, 6085–6105, doi: 10.5194/acp-19-6085-2019, 2019.
- Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743-12778, doi: 10.5194/acp-17-12743-2017, 2017.
- Wargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N., and Partyka, G.: Evaluation of the ozone fields in NASA's MERRA-2 reanalysis, J. Clim., doi: 10.1175/JCLI-D-16-0699.1, 2017.
- Millán, L. F. and Manney, G. L.: An assessment of ozone mini-hole representation in reanalyses over the Northern Hemisphere, Atmos. Chem. Phys., 17, 9277-9289, doi: 10.5194/acp-17-9277-2017, 2017.
- Boothe, A. C. and Homeyer, C. R.: Global large-scale stratosphere-troposphere exchange in modern reanalyses, Atmos. Chem. Phys., 17, 5537-5559, doi: 10.5194/acp-17-5537-2017, 2017.
- Miyazaki, K., Eskes, H. J., and Sudo, K.: A tropospheric chemistry reanalysis for the years 2005–2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data, Atmos. Chem. Phys., 15, 8315-8348, doi: 10.5194/acp-15-8315-2015, 2015.
- Jiang, J. H., Su, H., Zhai, C., Wu, L., Minschwaner, K., Molod, A. M., and Tompkins, A. M.: An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations, J. Geophys. Res., 120, doi: 10.1002/2015JD023752, 2015.
- Min, S.-K., and Son, S.-W.: Multimodel attribution of the Southern Hemisphere Hadley cell widening: Major role of ozone depletion, J. Geophys. Res., 118, 3007–3015, doi: 10.1002/jgrd.50232, 2013.
- Randel, W. J., and Jensen, E. J.: Physical processes in the tropical tropopause layer and their roles in a changing climate, Nature Geosci., 6, 169–176, doi: 10.1038/ngeo1733, 2013.
- Schoeberl, M. R., Dessler, A. E., and Wang, T.: Simulation of stratospheric water vapor and trends using three reanalyses, Atmos. Chem. Phys., 12, 6475–6487, doi: 10.5194/acp-12-6475-2012, 2012.
- Dragani, R.: On the quality of the ERA-Interim ozone reanalyses: comparisons with satellite data, Q. J. Roy. Meteor. Soc., 137, 1312–1326, doi: 10.1002/qj.821, 2011.
- Dethof, A., and Hólm, E. V.: Ozone assimilation in the ERA-40 reanalysis project, Q. J. R. Meteorol. Soc., 130, 2851–2872. doi: 10.1256/qj.03.196, 2004.
|
Brewer-Dobson Circulation
- Prignon, M., Chabrillat, S., Friedrich, M., Smale, D., Strahan, S. E., Bernath, P. F., et al.: Stratospheric fluorine as a tracer of circulation changes: Comparison between infrared remote-sensing observations and simulations with five modern reanalyses, J. Geophys. Res. Atmos., 126, e2021JD034995, doi: 10.1029/2021JD034995, 2021.
- Ploeger, F., Diallo, M., Charlesworth, E., Konopka, P., Legras, B., Laube, J. C., Grooß, J.-U., Günther, G., Engel, A., and Riese, M.: The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis, Atmos. Chem. Phys., 21, 8393–8412, doi: 10.5194/acp-21-8393-2021, 2021.
- Diallo, M., Ern, M., and Ploeger, F.: The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends, Atmos. Chem. Phys., 21, 7515–7544, doi: 10.5194/acp-21-7515-2021, 2021.
- Minganti, D., Chabrillat, S., Christophe, Y., Errera, Q., Abalos, M., Prignon, M., Kinnison, D. E., and Mahieu, E.: Climatological impact of the Brewer–Dobson circulation on the N2O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses, Atmos. Chem. Phys., 20, 12609–12631, doi: 10.5194/acp-20-12609-2020, 2020.
- Ploeger, F., Legras, B., Charlesworth, E., Yan, X., Diallo, M., Konopka, P., Birner, T., Tao, M., Engel, A., and Riese, M.: How robust are stratospheric age of air trends from different reanalyses?, Atmos. Chem. Phys., 19, 6085–6105, doi: 10.5194/acp-19-6085-2019, 2019.
- Linz, M., Abalos, M., Glanville, A. S., Kinnison, D. E., Ming, A., and Neu, J. L.: The global diabatic circulation of the stratosphere as a metric for the Brewer–Dobson circulation, Atmos. Chem. Phys., 19, 5069–5090, doi: 10.5194/acp-19-5069-2019, 2019.
- Sato, K. and Hirano, S.: The climatology of the Brewer–Dobson circulation and the contribution of gravity waves, Atmos. Chem. Phys., 19, 4517-4539, doi: 10.5194/acp-19-4517-2019, 2019.
- Diallo, M., Konopka, P., Santee, M. L., Müller, R., Tao, M., Walker, K. A., Legras, B., Riese, M., Ern, M., and Ploeger, F.: Structural changes in the shallow and transition branch of the Brewer–Dobson circulation induced by El Niño, Atmos. Chem. Phys., 19, 425-446, doi: 10.5194/acp-19-425-2019, 2019.
- Chabrillat, S., Vigouroux, C., Christophe, Y., Engel, A., Errera, Q., Minganti, D., Monge-Sanz, B. M., Segers, A., and Mahieu, E.: Comparison of mean age of air in five reanalyses using the BASCOE transport model, Atmos. Chem. Phys., 18, 14715-14735, https://doi.org/10.5194/acp-18-14715-2018, 2018.
- Linz, M., Plumb, R. A., Gerber, E. P., Haenel, F. J., Stiller, G., Kinnison, D. E., Ming, A., and Neu, J. L.: The strength of the meridional overturning circulation of the stratosphere, Nature Geoscience, 10, 663-667, doi: 10.1038/ngeo3013, 2017.
- Miyazaki, K., Iwasaki, T., Kawatani, Y., Kobayashi, C., Sugawara, S., and Hegglin, M. I.: Inter-comparison of stratospheric mean-meridional circulation and eddy mixing among six reanalysis data sets, Atmos. Chem. Phys., 16, 6131-6152, https://doi.org/10.5194/acp-16-6131-2016, 2016.
- Kobayashi, C., and Iwasaki, T.: Brewer-Dobson circulation diagnosed from JRA-55, J. Geophys. Res. Atmos., 121, doi: 10.1002/2015JD023476, 2016.
- Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012, J. Geophys. Res., 120, 7534-7554, doi: 10.1002/2015JD023182, 2015.
- Monge-Sanz, B. M., et al.: Improvements in the stratospheric transport achieved by a chemistry transport model with ECMWF (re)analyses: identifying effects and remaining challenges, Q. J. Roy. Meteor. Soc., 139, 654–673, doi: 10.1002/qj.1996, 2013.
- Iwasaki, T., Hamada, H., and Miyazaki, K.: Comparisons of Brewer-Dobson circulations diagnosed from reanalysis, J. Meteorol. Soc. Japan, 87(6), 997-1006, doi: 10.2151/jmsj.87.997, 2009.
- Monge-Sanz, B. M., Chipperfield, M. P., Simmons, A. J., and Uppala, S. M.: Mean age of air and transport in a CTM: Comparison of different ECMWF analyses, Geophys. Res. Lett., 34, L04801, doi: 10.1029/2006GL028515, 2007.
- van Noije, T. P. C., et al.: Implications of the enhanced Brewer-Dobson circulation in European Centre for Medium-Range Weather Forecasts reanalysis ERA-40 for the stratosphere-troposphere exchange of ozone in global chemistry transport models, J. Geophys. Res., 109, D19308, doi: 10.1029/2004JD004586, 2004.
|
Stratosphere-Troposphere Coupling
- Ayarzagüena, B., Palmeiro, F. M., Barriopedro, D., Calvo, N., Langematz, U., and Shibata, K.: On the representation of major stratospheric warmings in reanalyses, Atmos. Chem. Phys., 19, 9469–9484, doi: 10.5194/acp-19-9469-2019, 2019.
- Hitchcock, P.: On the value of reanalyses prior to 1979 for dynamical studies of stratosphere–troposphere coupling, Atmos. Chem. Phys., 19, 2749-2764, doi: 10.5194/acp-19-2749-2019, 2019.
- Gerber, E. P. and Martineau, P.: Quantifying the variability of the annular modes: reanalysis uncertainty vs. sampling uncertainty, Atmos. Chem. Phys., 18, 17099-17117, doi: 10.5194/acp-18-17099-2018, 2018.
- Martineau, P., Son, S.-W., Taguchi, M., and Butler, A. H.: A comparison of the momentum budget in reanalysis datasets during sudden stratospheric warming events, Atmos. Chem. Phys., 18, 7169-7187, doi: 10.5194/acp-18-7169-2018, 2018.
- Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63-76, doi:10.5194/essd-9-63-2017, 2017.
- Martineau, P. and Son, S.-W.: Quality of reanalysis data during stratospheric vortex weakening and intensification events, Geophys. Res. Lett., 37, L22801, doi: 10.1029/2010GL045237, 2010.
|
Upper Troposphere and Lower Stratosphere
- Manney, G. L., Hegglin, M. I., and Lawrence, Z. D.: Seasonal and regional signatures of ENSO in upper tropospheric jet characteristics from reanalyses, J. Clim., , , doi: 10.1175/JCLI-D-20-0947.1, 2021.
- Manney, G. L., Santee, M. L., Lawrence, Z. D., Wargan, K., and Schwartz, M. J.: A moments view of climatology and variability of the Asian Summer monsoon anticyclone, J. Clim., 34, 7821-7841, doi: 10.1175/JCLI-D-20-0729.1, 2021.
- Xian, T. and Homeyer, C. R.: Global tropopause altitudes in radiosondes and reanalyses, Atmos. Chem. Phys., 19, 5661–5678, doi: 10.5194/acp-19-5661-2019, 2019.
- Manney, G. L., and Hegglin, M. I.: Corrigendum for “Seasonal and regional variations in long-term changes in upper-tropospheric jets from reanalyses”, J. Clim., 31, 1289-1293, doi: 10.1175/JCLI-D-17-0881.1, 2018.
- Manney, G. L., and Hegglin, M. I.: Seasonal and regional variations in long-term changes in upper-tropospheric jets from reanalyses, J. Clim., 31, 423-448, doi: 10.1175/JCLI-D-17-0303.1, 2018.
- Manney, G. L., Hegglin, M. I., Lawrence, Z. D., Wargan, K., Millán, L. F., Schwartz, M. J., Santee, M. L., Lambert, A., Pawson, S., Knosp, B. W., Fuller, R. A., and Daffer, W. H.: Reanalysis comparisons of upper tropospheric-lower stratospheric jets and multiple tropopauses, Atmos. Chem. Phys., 17, 11541-11566, doi: 10.5194/acp-17-11541-2017, 2017.
- Boothe, A. C. and Homeyer, C. R.: Global large-scale stratosphere-troposphere exchange in modern reanalyses, Atmos. Chem. Phys., 17, 5537-5559, doi: 10.5194/acp-17-5537-2017, 2017.
- Nützel, M., Dameris, M., and Garny, H.: Movement, drivers and bimodality of the South Asian High, Atmos. Chem. Phys., 16, 14755-14774, doi: 10.5194/acp-16-14755-2016, 2016.
|
Quasi-Biennial Oscillation
- Kim, Y.-H., Kiladis, G. N., Albers, J. R., Dias, J., Fujiwara, M., Anstey, J. A., Song, I.-S., Wright, C. J., Kawatani, Y., Lott, F., and Yoo, C.: Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses, Atmos. Chem. Phys., 19, 10027–10050, doi: 10.5194/acp-19-10027-2019, 2019.
- Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., and Schenzinger, V.: Surface impacts of the Quasi Biennial Oscillation, Atmos. Chem. Phys., 18, 8227-8247, doi: 10.5194/acp-18-8227-2018, 2018.
- Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A.: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses, Atmos. Chem. Phys., 16, 6681-6699, doi: 10.5194/acp-16-6681-2016, 2016.
- Coy, L., Wargan, K., Molod, A. M., McCarty, W. R., and Pawson, S.: Structure and dynamics of the quasi-biennial oscillation in MERRA-2, J. Clim, 29, 5339-5354, doi: 10.1175/JCLI-D-15-0809.1, 2016.
- Kim, Y.-H., and Chun, H.-Y.: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses, Atmos. Chem. Phys., 15, 6577-6587, doi: 10.5194/acp-15-6577-2015, 2015.
- Mitchell, D., et al.: Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets, Q. J. Roy. Meteor. Soc., doi: 10.1002/qj.2492, 2014.
- Pawson, S., and Fiorino, M.: A comparison of reanalyses in the tropical stratosphere: Part 2: the quasi-biennial oscillation, Clim. Dynam., 14, 645–658, 1998.
|
Wave Activity and Mixing
- Podglajen, A., Hertzog, A., Plougonven, R., and Legras, B.: Lagrangian gravity wave spectra in the lower stratosphere of current (re)analyses, Atmos. Chem. Phys., 20, 9331–9350, doi: 10.5194/acp-20-9331-2020, 2020.
- Kim, Y.-H., Kiladis, G. N., Albers, J. R., Dias, J., Fujiwara, M., Anstey, J. A., Song, I.-S., Wright, C. J., Kawatani, Y., Lott, F., and Yoo, C.: Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses, Atmos. Chem. Phys., 19, 10027–10050, doi: 10.5194/acp-19-10027-2019, 2019.
- Abalos, M., Legras, B. and Shuckburgh, E.: Interannual variability in effective diffusivity in the upper troposphere/lower stratosphere from reanalysis data, Q. J. R. Meteorol. Soc., doi: 10.1002/qj.2779, 2016.
- Fujiwara, M., et al.: Wave activity in the tropical tropopause layer in seven reanalysis and four chemistry climate model data sets, J. Geophys. Res., 117, D12105, doi: 10.1029/2011JD016808, 2012.
- Flannaghan, T. J., and Fueglistaler, S.: Kelvin waves and shear-flow turbulent mixing in the TTL in (re-)analysis data, Geophys. Res. Lett., 38, L02801, doi: 10.1029/2010GL045524, 2011.
|
Clouds and Diabatic Heating
- Wright, J. S., Sun, X., Konopka, P., Krüger, K., Legras, B., Molod, A. M., Tegtmeier, S., Zhang, G. J., and Zhao, X.: Differences in tropical high clouds among reanalyses: origins and radiative impacts, Atmos. Chem. Phys., 20, 8989–9030, doi: 10.5194/acp-20-8989-2020, 2020.
- Zhang, K., Randel, W. J., and Fu, R.: Relationships between outgoing longwave radiation and diabatic heating in reanalyses, Clim. Dyn., doi: 10.1007/s00382-016-3501-0, 2016.
- Wright, J. S. and Fueglistaler, S.: Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere, Atmos. Chem. Phys., 13, 9565–9576, doi: 10.5194/acp-13-9565-2013, 2013.
- Fueglistaler, S., et al.: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses, Q. J. Roy. Meteor. Soc., 135, 21–37, doi: 10.1002/qj.361, 2009.
|
Upper Stratosphere and Lower Mesosphere
- McCormack, J. P., Harvey, V. L., Pedatella, N., Koshin, D., Sato, K., Coy, L., Watanabe, S., Randall, C. E., Sassi, F., and Holt, L. A.: Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010, Atmos. Chem. Phys. Discuss. [preprint], doi: 10.5194/acp-2021-224, in review, 2021.
- Marlton, G., Charlton-Perez, A., Harrison, G., Polichtchouk, I., Hauchecorne, A., Keckhut, P., Wing, R., Leblanc, T., and Steinbrecht, W.: Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses, Atmos. Chem. Phys., 21, 6079–6092, doi: 10.5194/acp-21-6079-2021, 2021.
- Kawatani, Y., Hirooka, T., Hamilton, K., Smith, A. K., and Fujiwara, M.: Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses, Atmos. Chem. Phys., 20, 9115–9133, doi: 10.5194/acp-20-9115-2020, 2020.
- Harvey, V. L., Randall, C. E., Goncharenko, L., Becker, E., France, J.: On the upward extension of the polar vortices into the mesosphere, J. Geophys. Res. Atmos., 123, 9171-9191, doi: 10.1029/2018JD028815, 2018.
- Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A.: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses, Atmos. Chem. Phys., 16, 6681-6699, doi: 10.5194/acp-16-6681-2016, 2016.
|
Diurnal Variations
- Sakazaki, T., Fujiwara, M., and Shiotani, M.: Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations, Atmos. Chem. Phys., 18, 1437-1456, doi: 10.5194/acp-18-1437-2018, 2018.
- Chen, G., Iwasaki, T., Qin, H., and Sha, W.: Evaluation of the Warm-Season Diurnal Variability over East Asia in Recent Reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA, J. Climate, 27, 5517-5537, doi: 10.1175/JCLI-D-14-00005.1, 2014.
- Sakazaki, T., Fujiwara, M., Zhang, X., Hagan, M., and Forbes, J.: Diurnal tides in the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets, J. Geophys. Res., 117, D13108, doi: 10.1029/2011JD017117, 2012.
- Sakazaki, T., Fujiwara, M., and Hashiguchi, H.: Diurnal variations of upper tropospheric and lower stratospheric winds over Japan as revealed with middle and upper atmosphere radar (34.85N, 136.10E) and five reanalysis data sets, J. Geophys. Res., 115, D24104, doi: 10.1029/2010JD014550, 2010.
- Sakazaki, T., and Fujiwara, M.: Diurnal variations in lower-tropospheric wind over Japan. Part II: Analysis of Japan Meteorological Agency mesoscale analysis data and four global reanalysis data sets, J. Meteorol. Soc. Japan, 88, No. 3, 349-372, doi: 10.2151/jmsj.2010-306, 2010.
|
Polar Processes
- Orr, A., Lu, H., Martineau, P., Gerber, E. P., Marshall, G. J., and Bracegirdle, T. J.: Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?, Atmos. Chem. Phys., 21, 7451–7472, doi: 10.5194/acp-21-7451-2021, 2021.
- Millán, L. F., Manney, G. L., and Lawrence, Z. D.: Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics, Atmos. Chem. Phys., 21, 5355–5376, doi: 10.5194/acp-21-5355-2021, 2021.
- Lawrence, Z. D., Manney, G. L., and Wargan, K.: Reanalysis intercomparisons of stratospheric polar processing diagnostics, Atmos. Chem. Phys., 18, 13547-13579, doi: 10.5194/acp-18-13547-2018, 2018.
- Lambert, A. and Santee, M. L.: Accuracy and precision of polar lower stratospheric temperatures from reanalyses evaluated from A-Train CALIOP and MLS, COSMIC GPS RO, and the equilibrium thermodynamics of supercooled ternary solutions and ice clouds, Atmos. Chem. Phys. Discuss., 18, 1945-1975, doi: 10.5194/acp-18-1945-2018, 2018.
- Rapaić, M., Brown, R., Markovic, M., and Chaumont, D: An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010, Atmos. Ocean, 53(3), 283-303, doi: 10.1080/07055900.2015.1045825, 2015.
- Lawrence, Z. D., Manney, G. L., Minschwaner, K., Santee, M. L., and Lambert, A.: Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses, Atmos. Chem. Phys., 15, 3873-3892, doi: 10.5194/acp-15-3873-2015, 2015.
- Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of seven different atmospheric reanalysis products in the Arctic, J. Climate, 27(7), 2588-2606, doi: 10.1175/JCLI-D-13-00014.1, 2014.
- Manney, G. L., Allen, D. R., Krüger, K., Naujokat, B., Santee, M. L., Sabutis, J. L., Pawson, S., Swinbank, R., Randall, C. E., Simmons, A. J., and Long, C.: Diagnostic Comparison of Meteorological Analyses during the 2002 Antarctic Winter, Mon. Wea. Rev., 133, 1261–1278, doi: 10.1175/MWR2926.1, 2005.
- Manney, G. L., Krüger, K., Sabutis, J. L., Sena, S. A., and Pawson, S.: The remarkable 2003-2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s, J. Geophys. Res., 110, D04107, doi: 10.1029/2004JD005367, 2005.
- Manney, G. L., Sabutis, J. L., Pawson, S., Santee, M. L., Naujokat, B., Swinbank, R., Gelman, M. E., and Ebisuzaki, W.: Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies, J. Geophys. Res., 108, 8328, doi: 10.1029/2001JD001149, 2003.
|
Arctic Oscillation / North Atlantic Oscillation
- Domeisen, D. I. V., Badin, G., and Koszalka, I. M.: How predictable are the Arctic and North Atlantic Oscillations? Exploring the variability and predictability of the Northern Hemisphere, J. Clim., 31, 997–1014, doi: 10.1175/JCLI-D-17-0226.1, 2018.
|
Surface Climate
- Hobbs, W. R., Klekociuk, A. R., and Pan, Y.: Validation of reanalysis Southern Ocean atmosphere trends using sea ice data, Atmos. Chem. Phys., 20, 14757–14768, doi: 10.5194/acp-20-14757-2020, 2020.
- Fujiwara, M., Martineau, P., and Wright, J. S.: Surface temperature response to the major volcanic eruptions in multiple reanalysis data sets, Atmos. Chem. Phys., 20, 345–374, doi: 10.5194/acp-20-345-2020, 2020.
- Zhang, S., Ren, G., Ren, Y., and Sun, X.: Comparison of surface air temperature between observation and reanalysis data over eastern China for the last 100 years, J. Meteor. Soc. Japan, 97, doi: 10.2151/jmsj.2019-004, 2019.
- Zhou, C., He, Y., and Wang, K.: On the suitability of current atmospheric reanalyses for regional warming studies over China, Atmos. Chem. Phys., 18, 8113-8136, doi: 10.5194/acp-18-8113-2018, 2018.
- Du, J., Wang, K., Wang, J., Jiang, S., and Zhou, C.: Diurnal cycle of surface air temperature within China in current reanalyses: Evaluation and diagnostics, J. Clim., 31, 4585-4603, doi: 10.1175/JCLI-D-17-0773.1, 2018.
- Wunderlich, F. and Mitchell, D. M.: Revisiting the observed surface climate response to large volcanic eruptions, Atmos. Chem. Phys., 17, 485-499, doi: 10.5194/acp-17-485-2017, 2017.
|
Weather Systems and Tropospheric Circulation
- Rohrer, M., Brönnimann, S., Martius, O., Raible, C. C., Wilde, M., and Compo, G. P.: Representation of extratropical cyclones, blocking anticyclones, and Alpine circulation types in multiple reanalyses and model simulations, J. Clim., 31, 3009-3031, doi: 0.1175/JCLI-D-17-0350.1, 2018.
- Brunner, L. and Steiner, A. K.: A global perspective on atmospheric blocking using GPS radio occultation – one decade of observations, Atmos. Meas. Tech., 10, 4727-4745, doi: 10.5194/amt-10-4727-2017, 2017.
|
Tropical Cyclones
- Hodges, K., Cobb, A., Vidale, P. L.: How well are tropical cyclones represented in reanalysis datasets?, J. Clim., 30, 5243-5264, doi: 10.1175/JCLI-D-16-0557.1, 2017.
- Kossin, J. P.: Validating atmospheric reanalysis data using tropical cyclones as thermometers, Bull. Amer. Meteorol. Soc., 96, 1089-1096, doi: 10.1175/BAMS-D-14-00180.1, 2015.
- Murakami, H.: Tropical cyclones in reanalysis data sets, Geophys. Res. Lett., 41, 2133–2141, doi: 10.1002/2014GL059519, 2014.
|